❌

Reading view

Making Roman concrete produces as much CO2 as modern concrete

Builders in ancient Rome used a special kind of ancient concrete to construct their aqueducts, bridges, and buildings. But is Roman concrete more sustainable than the Portland cement used in today's concrete? The answer is more nuanced than one might think, according to a new paper published in the journal iScience. Roman concrete produces as much CO2 as modern methods, but fewer air pollutants.

As we've reported previously, like today's Portland cementΒ (a basic ingredient of modern concrete), ancient Roman concrete was basically a mix of a semi-liquid mortar and aggregate. Portland cement is typically made by heating limestone and clay (as well as sandstone, ash, chalk, and iron) in a kiln. The resulting clinker is then ground into a fine powder, with just a touch of added gypsumβ€”the better to achieve a smooth, flat surface.Β But the aggregate used to make Roman concrete was made up of fist-sized pieces of stone or bricks.

Scientists have long been fascinated by the remarkable longevity of Roman concrete; it's a very active field of study. For instance, in 2017, scientists analyzed the concrete from the ruins of sea walls along Italy's Mediterranean coast, which have stood for two millennia despite the harsh marine environment. That analysis revealed that the recipe involved a combination of rare crystals and a porous mineral. So exposure to seawater generated chemical reactions inside the concrete, causing aluminum tobermorite crystals to form out of phillipsite, a common mineral found in volcanic ash. The crystals bound to the rocks, preventing the formation and propagation of cracks that would have otherwise weakened the structures.

Read full article

Comments

Β© James Cocks/CC BY-SA 3.0

  •  

Japanese railway shelter replaced in less than 6 hours by 3D-printed model

Hatsushima is not a particularly busy station, relative to Japanese rail commuting as a whole. It serves a town (Arida) of about 25,000, known for mandarin oranges and scabbardfish, that is shrinking in population, like most of Japan. Its station sees between one to three trains per hour at its stop, helping about 530 riders find their way. Its wooden station was due for replacement, and the replacement could be smaller.

The replacement, it turned out, could also be a trial for industrial-scale 3D-printing of custom rail shelters. Serendix, a construction firm that previously 3D-printed 538-square-foot homes for about $38,000, built a shelter for Hatsushima in about seven days, as shown at The New York Times. The fabricated shelter was shipped in four parts by rail, then pieced together in a span that the site Futurism says is "just under three hours," but which the Times, seemingly present at the scene, pegs at six. It was in place by the first train's arrival at 5:45 am.

Either number of hours is a marked decrease from the days or weeks you might expect for a new rail station to be constructed. In one overnight, teams assembled a shelter that is 2.6 meters (8.5 feet) tall and 10 square meters (32 square feet) in area. It's not actually in use yet, as it needs ticket machines and finishing, but is expected to operate by July, according to the Japan Times.

Read full article

Comments

Β© West Japan Railway Company

  •